图 1. 不同死亡方式的比较
"铁死亡"的相关研究更是近几年热点中的“热点“,这也证明了金属元素在细胞死亡中的独特作用。迎来铁死亡,又遇铜死亡。
今年 3 月题为 Copper induced cell death by targeting lipoylated TCA cycle protein 一文提出:生物体内不可缺少的微量元素—铜在其浓度超过了维持稳态机制的阈值时也会表现出细胞毒性。这种现象与铁积累导致细胞死亡的情况有相似之处 (但机制明显区别于铁死亡)。研究人员将这种铜离子诱导细胞死亡的机制命名为 “铜死亡” (Cuproptosis)。
■ 铜死亡的简要机制
铜离子载体诱导的细胞死亡: 当 Cu2+ 在依赖线粒体呼吸的细胞中过度积累 (Cu2+ 通过铜离子载体运入细胞),Cu2+ 与硫辛酰化 DLAT 结合,诱导 DLAT 的异聚化。不溶性 DLAT 的增加导致细胞毒性,诱导细胞死亡。
注:蛋白质硫辛酰化修饰是一种保守的赖氨酸翻译后修饰,只发生在涉及 TCA 循环的四种蛋白,其中就包括 DLAT。DLAT 是丙酮酸脱氢酶复合体 (PDH Complex) 组分之一,丙酮酸脱氢酶可催化 TCA 循环中的丙酮酸脱羧生成乙酰辅酶 A。
FDX1 (一种还原酶、Elesclomol 的直接靶标) 作为蛋白质硫辛酰化修饰的上游调节因子,一方面,参与调节蛋白质 (包括 DLAT) 的硫辛酰化。另一方面,FDX1 将 Cu2+ 还原成更具毒性的 Cu+,导致 Fe-S 簇蛋白合成的抑制,诱导细胞死亡。
铜稳态失调导致的细胞死亡: 铜的稳态主要依赖与三个铜转运蛋白 SLC31A1、ATP7A/B、SLC31A1,SLC31A1 负责摄入铜,ATP7A 和 ATP7B 负责转出铜。铜稳态失调导致的细胞死亡与铜离子载体诱导的细胞死亡的机制一致。
■ 铜离子载体诱导的细胞死亡
在这篇文章中,研究人员测试了 1448 个铜离子载体 (一种高度亲脂性的 Cu2+ 结合分子,可将铜离子送入细胞),发现对 489 个细胞系的细胞杀伤作用 (图 3A)。以 Elesclomol (一种高度亲脂性的 Cu2+ 载体) 为例,单独加入 Elesclomol 不影响细胞的生长,同时加入铜离子,细胞生长就会受到极大抑制,而其他金属离子 (铁、钴、锌和镍等) 并不会影响细胞的生长 (图 3B)。使用 NSC-319726,Disulfiram 等其它铜离子载体处理细胞也得到了相同的结果 (图 3D-E)。
但使用 Tetrathiomolybdate (TTM;一种铜螯合剂) 联合 Elesclomol 处理细胞,可以缓解 Elesclomol 对细胞的杀伤作用。这些结果表明铜离子载体诱导的细胞死亡主要依赖于细胞内铜的积累。
图 3. 铜离子载体诱导的细胞死亡对铜具有高度选择性[2]
A:1448 个铜离子载体对 489 个细胞系的生长抑制;B:不同金属离子的情况下,用 Elesclomol 处理 MON 细胞;C:其他铜离子载体条件的细胞活力测定 D:使用 TTM 预处理 ABC1 细胞,然后 Elesclomol 处理
有研究表明 Elesclomol 诱导活性氧依赖性细胞凋亡,但实验结果表明 Elesclomol 诱导的细胞死亡不涉及 Caspase 3 (细胞凋亡的标志) 的切割或激活 (图 4D-E)。并且当细胞凋亡的关键效应子 BAX 和 BAK1 被敲除时,以及用 Caspase 抑制剂 (Z-VAD-FMK 和 Boc-D-FMK) 处理细胞,Elesclomol 仍然维持对细胞的杀伤潜力,此外,其他已知细胞死亡机制的抑制剂处理细胞 (包括铁死亡 (Ferrostatin-1)、坏死性凋亡 (Necrostatin-1) 和氧化应激 (N-acetylcysteine) ),也都未能消除铜离子载体诱导的细胞死亡。
这些结果表明铜离子载体诱导的细胞死亡机制与细胞凋亡途径不同。
图 4. 铜离子载体诱导细胞死亡不通过凋亡[2]
A:ICP-MS 检测细胞内的铜离子和锌离子;B:ES-Cu 处理 细胞,检测 Caspase 3/7 的激活;C:检测 Caspase 3 的表达;F:用 Elesclomol-CuCl2 处理 KO 细胞,检测细胞活力;
为进一步阐明铜离子和 TCA 循环之间的联系。研究人员使用 CRISPR-Cas9 技术,分别敲除不同的基因,再使用铜离子载体 (Elesclomol-copper) 处理细胞,以确定涉及参与铜离子载体诱导细胞死亡的基因。
结果发现有 7 个基因的敲除可以明显缓解铜离子载体介导的细胞杀伤作用 (图 6A-C),包括 FDX1,LIPT1、LIAS、DLD (硫辛酸途径的三个关键酶),DLAT、PDHA1、PDHB (丙酮酸脱氢酶复合体的三个组分)。另外,敲除 FDX1 和 LIAS 基因明显减轻铜离子载体引起的细胞毒性(图 6D-E),研究人员猜测 FDX1 有可能是蛋白质硫辛酰化修饰的上游调节因子。
为进一步验证这个假设,研究人员通过资源库 Cancer Dependency Map,发现 FDX1 和硫辛酸途径相关蛋白在铜离子载体诱导细胞死亡方面是高度相关的 (图 7A)。随后,研究人员选取肿瘤样本,对 FDX1 和硫辛酰化蛋白进行免疫组化染色,发现 FDX1 和硫辛酰化蛋白表达显著相关 (图 7B-C)。敲除 FDX1 会导致 DLAT 蛋白和 DLST 蛋白的硫辛酰化缺失 (图 7D),还会导致细胞呼吸水平下降 (图 7E)。
此外,研究人员通过代谢物分析发现敲除 FDX1 会导致丙酮酸和 α-酮戊二酸积累和琥珀酸的的消耗。还观察到 LIAS 的关键底物 S-腺苷甲硫氨酸 (SAM) 的积累。这些结果表明 FDX1 是蛋白质硫辛酰化的上游调节剂 (图 7F)。
■ 铜诱导细胞死亡机制与铜稳态失调的遗传模型相同
总结:
参考文献
1. Yongqiang Wang, Long Zhang, Fangfang Zhou. Cuproptosis: a new form of programmed cell death. Cell Mol Immunol. 2022 Apr 22.
2. Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254-1261.
3. Li SR, Bu LL, Cai L. Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther. 2022;7(1):158.4. Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022;32(5):417-418.