链霉菌通过生长素信号传导和原型防御途径的瞬时调节促进玉米生长并诱导对轮状镰刀菌的抗性
在气候变化的驱动下,由轮叶镰刀菌引起的镰刀菌穗腐病在全球玉米中频繁发生。与此同时,立法法规和日益提高的环境意识促使人们对替代FER生物控制策略进行了研究。 链霉菌是一类很有前途的细菌控制剂,因为它们具有代谢的多功能性。然而,对这些生物防治剂的分子作用模式往往缺乏深入的了解。 本研究旨在揭示链霉菌根际细菌菌株对枝镰孢菌(F. verticillioides)生物控制效果。 我们首先评估了四种链霉菌菌株ST02、ST03、ST07和ST08的直接拮抗作用。 然后,在玉米植株中评估了16个与内在植物防御信号传导相关的基因。 体外和体内数据均表明,生防菌株ST03能很好地抑制枝镰孢菌(F. verticillioides)。 在该菌株分泌的上清液中也观察到对细胞外化合物的高抑制效力。 特别是对于玉米芯,生防菌株ST03不仅抑制了枝镰孢菌(F. verticillioides),在接种后7天也显著抑制真菌伏马菌素的产生。 在玉米植株上,当与黄萎菌和菌株ST03共同施用时,土壤中真菌DNA水平显著降低,证实了直接拮抗作用。 在早期时间点,即使在没有枝镰孢菌(F. verticillioides),就其对植物的作用而言,菌株ST03诱导生长素反应基因(AUX1、ARF1和ARF2)和赤霉酸(GA)相关基因AN1的下调。 有趣的是,枝镰孢菌(F. verticillioides)即使在叶片中,在存在或不存在病原体的情况下,生物控制菌株诱导水杨酸(SA)、2,4-二羟基-7-甲氧基-1,4-苯并恶嗪-3-酮(DIMBOA)介导的途径相关基因和发病机制相关蛋白的表达。 所有这些都表明链霉菌菌株ST03是一种很有前途的FER生物防治和促进生长的候选菌株。
SMO构建WIWAM XY(Pathoviewer)高通量植物表型成像平台
WIWAM植物表型成像系统由比利时SMO公司与GHent大学VIB研究所研制生产,整合了LED植物只能培养、自动化控制系统、叶绿素荧光成像测量分析、植物热成像分析、植物近红外成像分析、植物高光谱分析、植物多光谱分析、植物CT断层扫描分析、自动条码识别管理、RGB真3D成像等多项先进技术, 以优化的方式实现大量植物样品以优化的方式实现大量植物样品——从拟南芥、水稻、玉米到各种其它植物的生理生态与形态结构成像分析,用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、生态毒理学研究、性状识别及植物生理生态分析研究等。
PathoViewer是一款高通量植物表型成像平台(属于WIWAM XY系列),使用了高分辨率图像在可控条件下对植物进行表型成像。该系统配备有6MP-16 bit的相机系统以及各种光学滤波轮,有广泛用途,例如测量叶绿素荧光、红色荧光蛋白、绿色荧光蛋白、自荧光、RGB改进花青素反射指数以及叶绿素指数等。系统为自动系统,用于测量植物或植物部分的生物或非生物胁迫。
Pathoviewer组合了RGB, 叶绿素荧光、花青素、NIR和GFP/RFP图像处理,对生物和非生物胁迫的影响进行成像。这些相机也可为研究人员采集植物科学相关信息,另外还可对表型特征可视化。下文将对测量的最重要参数进行讨论。
Pathoviewer能测量的最重要参数是Fv/FM值。该值通过叶绿素荧光获取,是指示测量植物光合性能的参数。荧光可用于测量PSII光合作用中的多种参数如线性电子流,CO2同化以及变化。