图 1. 不同的自噬机制及特点[2]。
自噬是一个高度集成的过程,通过促进细胞存活或导致细胞死亡来维持细胞稳态[3][4]。
▐ 自噬介导的细胞保护作用
自噬的主要功能是通过回收必要的细胞成分来促进应激/营养限制后的细胞存活。自噬由营养和能量应激、缺氧、氧化还原应激和线粒体损伤等多种刺激诱导[4]。图 2. 氧化应激通过多种机制诱导自噬[5]。
(A-D): 响应饥饿调节自噬的主要信号转导途径概述。(E-H):诱导自噬的特定应激途径概述:缺氧 (E);氧化损伤增加 (F); p53系统的干扰 (G)或线粒体功能障碍 (H) 诱导自噬的机制示意图。
例如,当细胞在同时缺乏营养和生长因子的情况下培养时,自噬到达最高水平[6]。而在小鼠中,饥饿 24-48 h 后,大多数组织中的大多数细胞显示出自噬体数量增加[7]。其次,细胞必须清除受损的线粒体,以防止 ROS 积聚[5]。当然,某些应激途径如中度缺氧时,也会诱导自噬,防止细胞死亡 (图 2)[5][8]。
▐ 自噬诱导细胞死亡
自噬经常在细胞死亡中观察到,在某些情况下,抑制自噬可以防止细胞死亡[9]。由于不同信号通路之间的广泛串扰,自噬的促死亡作用非常复杂[10]。今年 3 月,Jiao Liu 等人报道了 TMEM164 在铁死亡期间 (而不是饥饿期间) 选择性介导 ATG5 依赖性自噬体形成中的关键作用。TMEM164 通过激活自噬降解铁蛋白 (Ferritin)、GPX4 和脂滴,以增加铁积累和脂质过氧化,从而促进嗜铁细胞的死亡。TMEM164 的缺失限制了小鼠体内铁死亡介导的细胞毒性的抗癌活性,建立了自噬依赖性铁死亡的新模式[11]。
图 3. TMEM164 在自噬依赖性细胞死亡中的作用[11]。
铁死亡激活剂 (如 RSL3) 会诱导 TMEM164 依赖性自噬体形成,导致抗铁死亡调节因子 (如 GPX4、FTH1 和脂滴) 选择性降解。
研究表明,GX15-070 可通过增加自噬体的积累来诱导自噬,并促进 Atg5 (自噬体膜的一个组成部分) 与坏死体 (Necrosome) 的关键成分,即 FADD、RIP1 和 RIP3 的相互作用,触发坏死体在自噬体上的组装。这导致细胞质细胞死亡信号复合物的形成,引发坏死性细胞死亡[12]。
图 4. GX15-070 通过促进坏死体在自噬体上的组装来触发坏死性凋亡[12]。
自噬在癌症中具有的双重作用,具体取决于癌症的类型和阶段[10][13]。表 1. 诱导自和细胞死亡的药物治疗[10]。
随着自噬研究热度的增加,其相关检测也成为科研“汪”们的密切关注。细胞自噬体的数量和自噬通量常作为细胞自噬活性水平的指标。
▐ 监测自噬体的数量最传统的方法是电子显微镜,通过观察样品判断是否有自噬泡样结构出现。电镜下,发生自噬的细胞可见损伤的细胞器如线粒体的肿胀变性,其周围有空泡状双层膜样结构,或双层膜环绕线粒体形成自噬体,也可见自噬溶酶体内最终不能降解的残体等 (图 5 和图 6A)[15][16]。
图 5. 自噬体和自溶酶体形态[15]。
其次,哺乳动物自噬蛋白 LC3 是自噬体的标志物,可通过更广泛使用的光学显微镜和生化方法所检测。内源性 LC3 或 GFP-LC3 通过荧光显微镜观察为弥散的细胞质池或主要代表自噬体的点状结构 (图 6 B-C)。图 6. 自噬体数量和自噬通量的监测方法[15]。
Chloroquine 是自噬 (autophagy) 和 Toll 样受体 (TLRs) 的抑制剂。Chloroquine 有效抑制 SARS-CoV-2 (COVID-19) 感染 (EC50=1.13 μM)。 |
Hydroxychloroquine 可以抑制 Toll 样受体 7/9 (TLR7/9) 信号传导。Hydroxychloroquine 有效抑制 SARS-CoV-2 感染。 |
Vorinostat (SAHA) 是一种有效的,可口服的 HDAC1,HDAC2,HDAC3 (Class I),HDAC6 和 HDAC7 (Class II) 和 Class IV (HDAC11) 的抑制剂。 |
Sorafenib 诱导细胞自噬 (autophagy) 和凋亡 (apoptosis),并具有抗肿瘤活性。Sorafenib 也是一种 ferroptosis 激动剂。 |
Dactolisib (BEZ235) 是一种具有口服活性的、双重的 pan-class I PI3K 和 mTOR 抑制剂。Dactolisib (BEZ235) 抑制 mTORC1 和 mTORC2。 |
EACC 是可逆的自噬 (autophagy) 抑制剂,可阻断自噬通量。EACC 选择性抑制自噬体特异性的 SNARE Stx17 的易位,从而阻止自噬体与溶酶体的融合。 |