信号通路研究蛋白磷酸化抗体芯片/蛋白芯片
信号通路磷酸化广谱筛选抗体芯片(PEX100),采用三维高分子膜专用技术,在片基上高密度结合 1318 种高特异抗体,分别检测432个信号蛋白的679个磷酸化位点。这些信号蛋白广泛参与多条重要信号通路信号传导过程。芯片针对每一个特定蛋白磷酸化位点,设置一对抗体分别检测其磷酸化(Phospho)和非磷酸化(non-Phospho)状态以提高磷酸化检测灵敏度和稳定性。一次芯片实验即可实现30多条信号通路的同步筛选和具体调变位点的清晰定位,为后续生物现象的深入探索提供明确的研究方向。
| 抗体芯片特点
● 芯片规格为76 x 25 x 1 mm;
● 实现31条信号通路全面筛选;
● 每种抗体设置2次技术重复;
● 适用于组织、细胞等多类型样本;
● 5 x106细胞、100μg总蛋白量即可满足实验;
● 每个检测位点设有磷酸化和非磷酸化配对抗体;
● 可通用于人、小鼠、大鼠等多类型模式生物检测。
| 芯片检测范围
信号通路 |
蛋白数 |
信号通路 |
蛋白数 |
---|---|---|---|
MAPK signaling pathway |
67 |
Interleukin signaling pathway | 37 |
Erk signaling pathway |
59 |
Regulation of actin cytoskeleton |
36 |
Angiogenesis |
57 |
Jak-STAT signaling pathway |
32 |
Focal adhesion |
56 |
FGF signaling pathway |
29 |
Neurotrophin signling pathway |
52 |
Endocytosis |
29 |
ErbB signaling pathway |
45 |
Integrin signaling pathway |
29 |
AKT signaling pathway |
45 |
VEGF signaling pathway |
27 |
Chemokine signaling pathway |
45 |
Wnt signaling pathway |
26 |
PDGF signaling pathway |
43 |
p53 signaling pathway |
25 |
T cell receptor signaling pathway |
43 |
NF-kappa B signaling pathway | 25 |
Apoptosis signaling pathway |
41 |
Adipocytokine signaling pathway |
19 |
EGF receptor signaling pathway |
41 |
Calcium signaling pathway |
19 |
Insulin signaling pathway |
39 |
Insulin/IGF pathway |
16 |
CREB signaling pathway |
39 |
mTOR signaling pathway |
16 |
Cell cycle |
37 |
TGF-beta signaling pathway |
13 |
| 抗体芯片原理
| 客户案例
PEX100芯片协助揭秘衰老引起的营养不良潜在机制
研究人员采集了不同月龄的正常B6小鼠的小肠进行组织学观察寻找到衰老引起营养吸收障碍的靶器官主要在空肠绒毛隐窝区域。经文献调研及实验研究发现,mTORC1蛋白在老龄小鼠肠绒毛老化过程中发挥着关键作用,但mTORC1通路是如何调控肠绒毛老化的呢?研究人员果断采用PEX100磷酸化广筛抗体芯片技术,对Villin-Cre;Tsc1f/f小鼠的小肠组织进行广泛的蛋白磷酸化筛选。抗体芯片迅速锁定了mTORC1下游一系列关键分子,其中p38MAPK蛋白的在Villin-Cre;Tsc1f/f小鼠中上调7.21倍,尤为显著。
研究人员利用Westernblot证实了p38MAPK以及其上游的MKK6蛋白在Tsc1−/−肠绒毛中显著上调,而雷帕霉素的施用可以逆转该现象。为进一步证实MKK6与p38MAPK的调控关系,在体外培养的MEFs细胞中,利用顺转siRNA的方式敲降MKK6后,发现p38MAPK的磷酸化变化受到了MKK6的调控,即说明MKK6是介于mTORC1和p38MAPK的中间信号转导蛋白。
研究人员通过一系列的研究,逐步明确了mTORC1-MKK6-p38MAPK-p53通路在肠绒毛老化中发挥着关键作用,并为逆转肠绒毛老化,改善衰老引起的营养不良找到了潜在的治疗靶点和候选药物小分子。
详细内容点击查看:https://mp.weixin.qq.com/s/_tG9Y9v-5oh3qPDvAtPGjw
| 客户文献
[1]. Fu Liwei, Li Pinxue, Zhu Junyao et al. Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ. Bioact Mater, 2022, 9: 411-427. IF=14.593
[2]. Geng YJ, Chen SL, Yang Y, et al. Long-term exposure to genistein inhibits the proliferation of gallbladder cancer by downregulating the MCM complex. Science Bulletin, 2022(1). 2022 Apr il; 67(8): p. 813-824. IF=11.780
[3]. Du Changhong, Wang Xinmiao, Wu Yiding, et al. Renal Klotho and inorganic phosphate are extrinsic factors that antagonistically regulate hematopoietic stem cell maintenance. Cell Rep, 2022, 38: 110392. IF=9.423
[4]. Lin Yao-Xin, Wang Yi, Ding Jianxun, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci Transl Med, 2021, 13: undefined. IF=17.956
[5]. Jiang Wenhao, Jin Yunyun, Zhang Shiwei, et al. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis.[J] .Bone Res, 2022, 10: 27. IF=13.567
[6]. Zhu Rongjia, Yan Tingdong, Feng Yingmei, et al. Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Res, 2021, 31: 1244-1262. IF=25.617
[7]. Li Hui, Jin Yuhong, Zhao Yu, et al. Targeted cell therapy for partial-thickness cartilage defects using membrane modified mesenchymal stem cells by transglutaminase 2. Biomaterials, 2021, 275: 120994. IF=12.479
[8]. Long Hui, Yu Weina, Yu Sha, et al. Progesterone affects clinic oocyte yields by coordinating with follicle stimulating hormone via PI3K/AKT and MAPK pathways. J Adv Res, 2021, 33: 189-199. IF=10.479
[9]. Huang Tinglei, Chen Biying, Wang Feng, et al. Rab1A promotes IL-4R/JAK1/STAT6-dependent metastasis and determines JAK1 inhibitor sensitivity in non-small cell lung cancer. Cancer Lett, 2021, 523: 182-194. IF=8.679
[10]. Zhao Qun, Guo Jian, Wang Guizhen, et al. CXCL13 promotes intestinal tumorigenesis through the activation of epithelial AKT signaling. Cancer Lett, 2021, 511: 1-14. IF=8.679
[11]. He D, Wu HG, Xiang JN, et al. Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nat Commun. 2020 Jan 2;11(1):37. IF=14.919
[12]. Chen WL, Jin X,Wang MS, et al. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight. 2020 Feb 13;5(3):e131596. IF=8.315
[13]. Yan LX, Li HY, Xia WL. Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity. Cell Prolif. 2020 Nov;53(11):e12906. IF=6.831
[14]. Gan XJ, Zhang RS, Gu J, et al. Acidic Microenvironment Regulates the Severity of Hepatic Ischemia/Reperfusion Injury by Modulating the Generation and Function of Tregs via the PI3K-mTOR Pathway. Front Immunol. 2020 Jan 9;10:2945. IF=7.561
[15]. He D, Wu HG, Xiang JN, et al. Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway. Nat Commun. 2020 Jan 2;11(1):37. IF=14.919
[16]. Zeng Q, Liu YM, Liu J, et al. Inhibition of ZIP4 reverses epithelial-to-mesenchymal transition and enhances the radiosensitivity in human nasopharyngeal carcinoma cells. Cell Death Dis. 2019 Aug 5;10(8):588. IF=8.469
[17]. Yin LM, Xu YD, Peng LL, et al. Transgelin-2 as a therapeutic target for asthmatic pulmonary resistance. Sci Transl Med. 2018 Feb 7;10(427):eaam8604. IF=17.956
[18]. Gao YY, Bai XF, Zhang DJ , et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nat Struct Mol Biol. 2016 May;23(5):441-9. IF=15.369
[19]. Jiang HL, Sun HF, Gao SP, et al. SSRP1 uppresses TGF-β-Driven Epithelial-to-Mesenchymal Transition and Metastasis in Triple-Negative Breast Cancer by Regulating Mitochondrial Retrograde Signaling, Cancer Res. 2016 Feb 15;76(4):952-64. IF=12.701
[20]. Kuang XY, Jiang HS, Li K, et al. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis. Cancer Lett. 2016 Jul 10;377(1):87-96. IF=8.679
[21]. Jia DS, Jing Y, Zhang ZF, et al. Amplification of MPZL1/PZR promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma. Cell Res. 2014 Feb;24(2):204 IF=25.617
上海华盈生物医药科技有限公司 位于上海闵行区绿洲环路396弄5幢4层,是医学生物技术领域的特色高科技企业。2012年3月,华盈生物由原生物芯片上海国家工程研究中心副主任即技术平台建设主要负责人张庆华博士发起创建。张庆华博士是国家生物芯片标准化委员会等多个国家级学会的委员,承担和参与了国家重大科技专项、“863”、“973”、自然科学基金等多个科研项目,被多所重点高校聘为博士生导师,并享受国务院特殊津贴。
华盈生物以科学和专业为服务理念,视人才队伍为企业生命,汇聚了多名多年从事基因组学与系统生物学研究的高层次研究人员。公司团队中 30% 成员具有博士学历,40% 成员具有硕士学历,30% 成员具有大学本科学历,是一支名副其实的高学历科技人才队伍。严谨、严格、创新和求真务实的工作作风贯彻公司上下。
华盈生物以蛋白与抗体芯片的技术研发与推广为核心,与美国 Full Moon、RayBiotech、CDI 等国际专业公司结成战略伙伴,与美国John Hopkins大学、上海交通大学、复旦大学等知名院校展开紧密合作。引进和开发了丰富的蛋白芯片与抗体芯片技术平台,提供信号通路蛋白质磷酸化、胞内蛋白质表达、细胞因子表达、蛋白质相互作用、血清抗体谱筛选等多项蛋白水平组学技术服务项目。同时,公司充分发挥核心团队系统生物学研究背景优势,积极发展基因表达谱芯片、microRNA芯片、LncRNA芯片、PCR Array等多项基因水平研究技术服务,力求通过强大的数据挖掘与分析延伸服务打造出一个立体的组学科研技术服务体系,实现广大科研工作者“一站式”科研服务的愿望。
单位名称: |
详细地址:
上海闵行区绿洲环路396弄5幢4层
|
qq:
|
联系电话: |
Email: |