光合作用

便携式光合-荧光测量系统——GFS-3000

基本信息
产品名称:
便携式光合-荧光测量系统——GFS-3000
英文名称:
Portable Gas-Exchange & Fluorescence Measuring System
国产/进口:
进口
产地/品牌:
德国WALZ
型号:
GFS-3000
参考报价:
询价
总点击数:
15703
更新日期:
2025-10-12
产品类别:

性能参数

 

GFS-3000_Studio_046_ret.jpg

Microsoft Sway中查看 

主要功能

  • 测量光合作用、蒸腾作用、呼吸作用、叶绿素荧光(可选)

  • 气体交换和荧光参数的光响应曲线和 CO2 响应曲线

  • 同步测量 CO2 气体交换与其它光合指标

 

测量参数

净光合速率,呼吸速率,蒸腾速率,气孔导度,胞间二氧化碳浓度,叶绿素荧光参数(可选)等

 

应用领域

植物生理、植物生态、农学、林学、园艺学等。

 

主要技术参数

CO2/H2O分析器

  • CO测量:两个绝对独立的测量探头,测量范围 0~5000 ppm,分辨率 0.01 ppm。

  • H2O 测量:两个绝对独立的测量探头,测量范围 0~75000 ppm,分辨率 0.01 ppm。

  • 绝对模式下的最大噪音:CO2 < 0.2 ppm(0.2 μmol mol-1);H2O < 30 ppm(30 μmol mol-1)。

  • 气压测量:范围:60~110 kPa;精度:±0.1%。

  • 流速测量:热气流计,范围 0~1500 μmol s-1;精度:±1%。

  • 用户面板:全新彩色触摸显示屏,安装专为嵌入式系统设计的 Windows 操作系统。背景光 7 级可调,阳光下能清晰显示。触摸屏可用手指直接操作,也可用附带的塑料触摸笔操作。有效显示面积 10 cm × 13 cm。

  • CO控制:通过热动式调节阀控制 CO2 浓度,范围 0~2000 ppm;CO2 可由 CO2 小钢瓶(通过 CO2 注入系统)或外接罐装大钢瓶(通过减压阀)提供。

  • H2O 控制:独特的干、湿双重控制系统,无论叶室内空气过度干燥或湿润,均可迅速调节到所需湿度;范围 0~100 % rh(非冷凝)。

  • 电源供应:14.4V/6.7 Ah 96Wh可充电eSMART电池,2块电池即可运行机器,标配 4块,可不间断测量更换电池;可外接交流电适配器 3020-N。

  • 工作时间:2 块电池工作时间~4.5小时,4块电池,2组,工作时间 ~9 小时,可选择加配电池。

  • 工作温度: -5℃ ~+45℃。

 

叶室

  • 温度测量范围: -10℃ ~+50℃,精度 ±0.1℃。

  • 温度控制:3 种控温模式:(控制)叶室温度跟随环境温度变化;设定恒定叶室温度(叶片温度可变);设定恒定叶片温度(叶室温度可变)。叶室温度可控范围:低于环境温度 10℃ ~+50℃。

  • 叶片温度测量:热电耦,测量范围 -10℃ ~+50℃,精度 ±0.2℃。

  • 外置光量子传感器:测量光合有效辐射(PAR),测量范围 0~2500 μmol m-2 s-1,精度 ±5%,Cosine 校正。

  • 叶室内置光量子传感器:测量光合有效辐射(PAR),测量范围 0~2500 μmol m-2 s-1,精度 ±10%。两个传感器,分别测量叶片正面和背面 PAR 变化。

  • 叶室通风系统:叶室上、下部各有一个风扇,由各自独立的电机控制,速度可调,可对叶室(叶片)上、下部分别通风,保证叶室内气体均匀混合。

  • 叶面积:标准 8 cm2,更换配件后可选择测量面积 1~12.5 cm2,可适应不同的叶形。

  • 叶室体积:标准40 ml。

  • 工作温度: -5℃ ~+45℃。

 

红蓝LED光源

设计:24 个红色发光二极管(LED)和 2 个蓝色 LED 组成的 LED 阵列。

光强范围:0~2000 μmol m-2 s-1,92% 的红光(650 nm)和 8% 的蓝光(470 nm)。

光场匀质性: ±20%

叶面积:8 cm2

电量消耗:最大 5 W

工作温度: -5℃ ~+45℃ 

 

全方位的PAR测量设计

GFS-3000 系统具备全方位的 PAR 测量设计:三个 PAR 传感器(下图红圈部分),分别测量环境 PAR,叶室内部叶片正面 PAR,以及叶室内部叶片背面 PAR。本设计的优点在于不会忽略叶片背面的光合作用测量。 

2.jpg 3-1.jpg

  

全方位的温度测量设计

独特的四温度测量设计:

  •  Tleaf:热电偶,测量叶片温度

  •  Tcuv:Pt-100 热敏电阻,测量叶室温度

  •  Tamb:Pt-100 热敏电阻,测量环境温度

  •  Ttop:Pt-100 热敏电阻,测量叶室上部温度

 

未标题-1.jpg

 

多种叶室可供选择

GFS-3000 标准叶室的设计允许快速、简便的更换各种满足特殊需要的叶室。红蓝 LED 光源 3040-L 可与所有叶室连接使用。

 

标准叶室

适合多数叶片,标准测量面积 8 cm2,可更换配件满足 1~12.5 cm2 的测量面积。 

5.jpg 6.jpg

 

柱状叶室

适合地衣、苔藓、土壤样品和小动物等。

7.jpg 8.jpg

 

针叶叶室

适合各种针叶植物叶片或小枝条。

9.jpg 10.jpg

 

拟南芥植株叶室

大容积,可放进(盆)直径 55 cm~70 mm 的盆栽拟南芥或其它小植株。

12121212.jpg 11.jpg

 

同步测量植物 CO2 气体交换与其它光合指标的解决方案

光合作用是地球上重要的化学反应之一,是整个生物圈物质循环与能量流动的基础。测量生物的光合作用一直是科研界的热点。

传统的光合作用测量主要包括调制叶绿素荧光(PAM 技术)、CO2 气体交换和光合放氧三大技术,几十年来在国际科研界均得到了广泛应用。由于调制叶绿素荧光和 CO2 气体交换都可以做到无损、原位、活体测量,对同一个样品可以进行长期的胁迫处理研究(光合放氧需要破碎叶片),因此应用更广泛一些。

此外,还有一种差式吸收技术,可以通过测量光合组分在氧化还原(或加亚基、去亚基)过程中的差式吸收来反映他们的活性。如通过测量光系统 I 反应中心叶绿素 P700 的差式吸收来测量光系统I的活性(DUAL-PAM-100),通过测量 P515/535 的差式吸收来测量跨膜质子梯度 ΔpH 和玉米黄素(Zea)的变化(DUAL-PAM-100 的 P515/535 模块),通过测量 500-570 nm 的差式吸收来测量 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f 等的活性变化(KLAS-100)。这种技术信号弱、难度高,但也具有无损、原位、活体测量的特点。随着双通道 PAM-100 测量系统 DUAL-PAM-100 的大规模商业化生产,差式吸收技术已在国际光合作用学界得到广泛应用。

更加可喜的是,可以同步测量 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)等活性的动态 LED 阵列差示吸收光谱仪 KLAS-100 也已研发成功,大大拓展了差示吸收技术在光合作用研究领域的应用。

除了利用上述几种技术进行单独测量外,从上世纪 80 年代后期,逐渐开始了两种技术的同步测量,如同步测量调制叶绿素荧光与 CO2 气体交换、同步测量调制叶绿素荧光与光合放氧等。

随着技术的进步,有越来越多的指标可以同步测量,而且即使是两种指标的同步测量(如调制叶绿素荧光与 CO2 气体交换),也可以有多种测量模式可供选择。

德国 WALZ 公司拥有 CO2 气体交换、调制叶绿素荧光和差式吸收三种核心技术。为了方便广大科研工作者更深入的了解各种光合作用的同步测量技术,泽泉生态开放实验室(Zealquest Laboratory for Ecological Research)总结出了一套 CO2 气体交换与其它光合指标的同步测量解决方案,希望能为相关单位提供参考。

 

方案功能与设备

444444.jpg

 

CO2 气体交换与调制叶绿素荧光、差式吸收等技术的同步测量,有很多模式可供选择。下面将根据技术难度从低到高的顺序,分 5 方面进行介绍。

 

同步测量一:同步测量 CO2 气体交换叶绿素荧光

CO2气体交换与叶绿素荧光的同步测量,主要有以下几种模式:

12.jpg   13.jpg
模式一GFS-3000/FL):便携式光合仪 GFS-3000 连接荧光附件 3057-FL,在仪器提供的人工光下同步测量气体交换与叶绿素荧光。3057-FL 不能单独使用。   模式二GFS-3000/F):便携式光合仪 GFS-3000 连接荧光附件 3050-F,在自然光下或人工光下同步测量气体交换与叶绿素荧光。3050-F 不能单独使用。
       
14.jpg   15.jpg
模式三GFS-3000/M):便携式光合仪 GFS-3000 连接超便携式调制荧光仪 MINI-PAM,在自然光下或人工光下同步测量气体交换与叶绿素荧光。MINI-PAM 可单独使用。   模式四GFS-3000/J):便携式光合仪 GFS-3000 连接基础型调制荧光仪 JUNIOR-PAM,在自然光下或人工光下同步测量气体交换与叶绿素荧光。JUNIOR-PAM 可单独使用。

 

上述 4 种模式可以根据需要灵活选择,特别是模式三,既可同步测量,也可分开测量。由于光合仪比较沉重,在许多条件苛刻的场合就可以携带极便携的 MINI-PAM 进行测量。

 

同步测量二:同步测量 CO2 气体交换叶绿素荧光成像

CO2 气体交换与叶绿素荧光成像的同步测量,主要有一下几种模式【技术文献见“代表文献”部分】。

模式一:与 MINI-IMAGING-PAM 联用

测量面积 2 x 3.2 cm
  

模式二:与 MAXI-IMAGING-PAM 联用

测量面积 10 x 13 cm
16.jpg   18-1.jpg

GFS-3000/IM-MINI

连接标准测量叶室,适合大多数样品测量。
 
    
17.jpg  

GFS-3000/IM-MINI-Arabidopsis

连接拟南芥整株叶室,适合小植株的整株测量。
 

GFS-3000/IM-MAXI

连接特制大叶室,适合大型叶片的测量。

 

由于 M 系列 IMAGING-PAM 可以共用一个主机分别连接多个测量面积不同的探头(MAXI-,MINI-,MICROSCOPY-),而 GFS-3000 又有多种叶室可供选择,这就极大丰富了同步测量 CO2 气体交换与叶绿素荧光成像的模式。如分别与 IMAGING-PAM 的 MAXI- 和 MINI- 探头连接,就可在不同的测量面积上同步测量。另外,与拟南芥整株叶室结合,就可测量小植株的整株气体交换和荧光成像。

GFS-3000 设计的一个重要特点就是,标准叶室、柱状叶室、针叶/簇状叶室、拟南芥整株叶室的上表面是相同的,都可以与 MINI-IMAGING-PAM 结合使用,更进一步扩大了同步测量的应用范围。

19.png

 

同步测量三:同步测量 CO2 气体交换P700 与叶绿素荧光

光合仪 GFS-3000 与 DUAL-PAM-100 测量系统联用,完美实现了气体交换、叶绿素荧光与差式吸收同步测量。同步测量 CO2 气体交换与 叶绿素荧光和P700 。

 

系统组成 

20.jpg 21.jpg GFS-3000_Studio_099_ret.jpg
DUAL-PAM-100 3010-DUAL GFS-3000
        
23-28.jpg
GFS-DUAL

 

主要功能

  • 同步测量 P700、叶绿素荧光与气体交换

  • 同步测量 P700、叶绿素荧光与气体交换的暗-光诱导曲线

  • 同步测量 P700、叶绿素荧光与气体交换的光响应曲线和 CO2 响应曲线

  • 典型的气体交换测量,如光合作用、蒸腾作用、呼吸作用

  • 典型的叶绿素荧光测量,如诱导曲线、快速光曲线、淬灭分析、暗驰豫等

  • 典型的 P700 曲线测量

  • 叶绿素荧光与 P700 的快速诱导动力学等

  • 编程进行复杂的同步或独立测量

 

测量参数

  • PS II 参数:Fo, Fm, F, Fm’, Fv/Fm, Y(II), Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等

  • PS I 参数:P700, Pm, Pm’, P700red, Y(I), Y(ND), Y(NA) 和 ETR(I) 等

  • 气体交换参数:参比室和样品室的 CO2 绝对值(CO2abs,CO2sam),参比室和样品室的 H2O 绝对值(H2Oabs,H2Osam),流速(gas flow),环境气压(Pamb),叶室温度(Tcuv),叶片温度(Tleaf),环境温度(Tamb),环境 PAR(PARamb),叶室内叶片正面 PAR(PARtop),叶室内叶片背面 PAR(PARbot),叶室相对湿度(rH),蒸腾速率(E),水气压饱和亏(VPD),叶片气孔导度(GH2O),净光合速率(A),胞间 CO2 浓度(Ci),环境 CO2 浓度(Ca),植物水分利用效率,CO2 响应曲线,光响应曲线等

 

DUAL-PAM 气体交换叶室——3010-DUAL

24.jpg 66666.jpg
3010-DUAL 3010-DUAL 与 DUAL-PAM-100 的测量头连接

 

专为 DUAL-PAM-100 与 GFS-3000 的同步测量设计,由特制叶室(带温度和 PAR 传感器)、风扇、导光杆、电子盒与支架构成。同步测量时,光源完全由 DUAL-PAM-100 的测量头提供,气体交换由 GFS-3000 的红外分析器检测,P700和叶绿素荧光由 DUAL-PAM-100 的检测器测量。

 

需要注意的是,3010-DUAL 可以连接 DUAL-PAM-100 的 DUAL-DB 测量头,但不能连接 DUAL-DR 测量头。DUAL-DR 的光学单元太复杂,连接 3010-DUAL 容易损伤 DUAL-DR。

 

测量实例

下面的两个图是以洋常春藤(Hedera helix)为材料,利用本系统同步测量的 P700、叶绿素荧光和气体交换的诱导曲线。

26.jpg
洋常春藤(Hedera helix)的 P700(蓝色)叶绿素荧光(红色)的诱导曲线
    
27.jpg
洋常春藤(Hedera helix)的净光合速率(红色)气孔导度(蓝色)的诱导曲线

 

 

同步测量四:同步测量 CO气体交换与跨膜质子动力势(pmf)、跨膜质子梯度(ΔpH) 、跨膜电位(ΔΨ)和玉米黄素(Zea)

 

P515/535 模块是 WALZ 公司为 DUAL-PAM-100 设计的测量模块,可以直接连接 DUAL-PAM-100 的主机,测量 550-510 nm 的差式吸收以及 535 nm 波长的信号变化。P515/535 模块可以测量光合器官的跨膜质子动力势(pmf)、跨膜电位(Δψ)、跨膜质子梯度(ΔpH)和玉米黄素(Zea)变化等内容。此外,该模块还提供一种特殊的 “P515 Flux” 操作模式,可让光化光以光-暗脉冲形式打开-关闭(1/1调制光/暗),原位测量活体样品处于稳态的偶联电子和质子的流动速率。

GFS-3000 通过专用气体交换叶室 3010-DUAL 与 DUAL-PAM-100 以及 P515/535 模块联用后,做到了同步测量 CO2 气体交换与跨膜质子动力势(pmf)、跨膜质子梯度(ΔpH) 、跨膜电位(ΔΨ)和玉米黄素(Zea)。由于 ΔpH 和 Zea 都与叶黄素循环密切相关,而叶黄素循环是植物光保护的重要调节机制,再结合气体交换指标反映的 Calvin 循环状况,就可以非常深入的对植物光保护调节机制进行研究。

23-28.jpg
     
29.jpg 30.png 31.jpg
DUAL-PAM-100 P515/535 与 GFS-3000 联用

 

 同步测量五:同步测量 CO2 气体交换与 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)

 

传统的差式吸收技术每次只能测量一个组分的差式吸收变化,而光合机构特别复杂,很多组分是偶联在一起发挥作用的,几种组分分开测量的结果难以完美表征它们在偶联的功能体下的实际作用机制。

Schreiber 教授花费 20 年时间研制的动态 LED 阵列差式吸收光谱仪 KLAS-100 完美的解决了上述缺陷。它采用 500-570 nm的差示吸收光谱技术来同步测量光合膜上 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)等8种组分的氧化还原变化。

著名的 DUAL-PAM-100 测量系统只有两个测量通道,而 KLAS-100 有 10 个测量通道。因此,1 台 KLAS-100 相当于 5 台 DUAL-PAM-100 的功能。

GFS-3000 通过 3010-DUAL 专用气体交换叶室与 KLAS-100 联用后,做到了同步测量 CO2 气体交换与 C550、Cyt b559、Cyt b563、Cyt c556、Cyt c6、Cyt f、P515、Scatt(散射信号)、Zea(玉米黄素)。

这些测量指标结合在一起,可以进行非常复杂的、前人未做过的深入研究。KLAS-100 是刚刚发展成熟的一种技术,在著名的《Plant Physiology》上发表了两篇文献。

 

32.jpg
KLAS-100

 

同步测量技术选购指南

利用 GFS-3000 与其它技术(调制叶绿素荧光、差式吸收)的联用,可以实现多种光合指标的同步测量,利用无损、原位、活体的测量进行非常复杂、深入的机理性研究。下表是实现这些测量功能的选购指南:

 

201610网站上传材料 便携式光合荧光测量系统GFS-3000 12.png

 

产地:德国 WALZ

 

代表文献

数据来源:光合作用文献 Endnote 数据库

原始数据来源:Google Scholar

Grinberg, M. A., et al. (2021). "Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress." Environmental and Experimental Botany 184: 104378.

Ifuku, K., et al. (2020). "Editorial: O2 and ROS Metabolisms in Photosynthetic Organisms." Front Plant Sci 11: 618550.

Khlopkov, A., et al. (2021). "Participation of calcium ions in induction of respiratory response caused by variation potential in pea seedlings." Plant Signal Behav: 1869415.

Turcios, A. E., et al. (2021). "Potassium, an important element to improve water use efficiency and growth parameters in quinoa (Chenopodium quinoa) under saline conditions." Journal of Agronomy and Crop Science n/a(n/a).

Basso, L., et al. (2020). "Collaboration between NDH and KEA3 Allows Maximally Efficient Photosynthesis after a Long Dark Adaptation." Plant Physiology 184(4): 2078-2090.

Cui, Y.-N., et al. (2020). "Chloride is beneficial for growth of the xerophyte Pugionium cornutum by enhancing osmotic adjustment capacity under salt and drought stresses." Journal of Experimental Botany 71(14): 4215-4231.

Dayer, S., et al. (2020). "The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance." Journal of Experimental Botany.

Du, B., et al. (2020). "Physiological responses of date palm (Phoenix dactylifera) seedlings to seawater and flooding." New Phytologist n/a(n/a).

Grieco, M., et al. (2020). "Adjustment of photosynthetic activity to drought and fluctuating light in wheat." Plant, Cell & Environment 43(6): 1484-1500.

Guo, H., et al. (2020). "Sodium chloride facilitates the secretohalophyte Atriplex canescens adaptation to drought stress." Plant Physiol Biochem 150: 99-108.

Kimura, H., et al. (2020). "Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light." Journal of Experimental Botany 71(7): 2339-2350.

Lamarque, L. J., et al. (2020). "Over-accumulation of abscisic acid in transgenic tomato plants increases the risk of hydraulic failure." Plant, Cell & Environment 43(3): 548-562.

Liu, L., et al. (2020). "Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities." Plant Physiology and Biochemistry 154: 699-713.

López-Calcagno, P. E., et al. (2020). "Stimulating photosynthetic processes increases productivity and water-use efficiency in the field." Nature Plants 6(8): 1054-1063.

Lu, J., et al. (2020). "Cyclic electron flow protects photosystem I donor side under low night temperature in tomato." Environmental and Experimental Botany: 104151.

Mantoan, L. P. B., et al. (2020). "Rapid dehydration induces long-term water deficit memory in sorghum seedlings: advantages and consequences." Environmental and Experimental Botany 180: 104252.

Perera-Castro, A. V., et al. (2020). "Photosynthesis on the edge: photoinhibition, desiccation and freezing tolerance of Antarctic bryophytes." Photosynthesis Research.

Salmon, Y., et al. (2020). "Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees." New Phytologist 226(3): 690-703.

Swift, T. A., et al. (2020). "Photosynthesis and crop productivity are enhanced by glucose-functionalized carbon dots." New Phytologist n/a(n/a).

Tazoe, Y., et al. (2020). "Overproduction of PGR5 enhances the electron sink downstream of photosystem I in a C4 plant, Flaveria bidentis." Plant Journal n/a(n/a).

Tsamir-Rimon, M., et al. (2020). "Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases." New Phytologist n/a(n/a).

Yamori, W., et al. (2020). "Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice." Plant, Cell Environmental.

Zhang, J., et al. (2020). "Arabidopsis thaliana branching enzyme 1 is essential for amylopectin biosynthesis and cesium tolerance." Journal of Plant Physiology 252: 153208.

Zhang, L., et al. (2020). "Drought activates MYB41 orthologs and induces suberization of grapevine fine roots." Plant Direct 4(11): e00278.

公司简介

上海泽泉科技股份有限公司(Zealquest Scientific Technology Co., Ltd.)成立于2000年,是一家专注于高端科研设备研发、系统集成、技术推广、咨询、销售和科研服务的科技型技术企业。公司注册资金3500万元人民币,具有进出口贸易权。

 

公司总部位于上海浦西,在北京设有分公司,在广州、成都、武汉分别设有代表处。公司全体员工均具有高等教育背景,其中80%的技术研发、技术支持和销售人员具有硕士和博士学位,参加过很多国家和省部级重大科研项目,具有丰富的科研工作经验。公司曾获得上海市高新技术企业、上海市普陀区科技小巨人企业、上海市科技型企业中华全国工商联合会/上海市工商联合会/上海市商会会员单位,曾是上海市专业技术服务平台——生理生态测量与分析平台的依托单位和上海市高新技术成果转化项目承担单位。2012年公司通过了ISO9001质量管理体系认证,获得AAA级信用资质等级认定,获得普陀区科技小巨人企业认定,成为上海市研发公共服务平台加盟单位和“上海市工商联合会”/“上海市商会”会员单位 。2015年获得“专精特新”中小企业认定。2016年成为“上海市生态学学会常务理事单位”和“上海种子行业协会”会员单位,2017年成为“上海市农业工程学会理事单位”。

 

上海泽泉科技股份有限公司非常注重自主知识产权的申报和保护,公司及子公司上海乾菲诺农业科技有限公司截止2024年底已获得发明专利8项、实用新型54项及软件著作9项,国内外科研期刊发表科研论文20多篇。公司还参与承担了国家自然科学基金重点项目(41030529)和水利部948项目(200907)。

 

公司秉承推进中国生态环境改善、科技兴国的理念,服务涉及机器人与人工智能应用,生命科学多组学研究,植物表型与植物生理生态、生物育种技术平台建设;土壤、环境气象、水文水利与海洋等领域的最新技术资讯和产品解决方案,服务对象主要为各级科研单位、高校和政府机构。公司先后为科技部“973”项目和“863”项目、国家科技重大专项、国家科技支撑计划、国家“211”工程和“985”工程、中科院知识创新工程、农业部“948”项目、水利部“948”项目等提供技术咨询、仪器设备、系统解决方案和系统集成服务,为项目的顺利完成提供了有力支持。

 

多年来,公司积极参与相关领域的学术会议,并定期举办相关仪器设备的技术讲座和培训班,在科研和监测领域产生了积极的反响,获得了良好的口碑。截止2024年底,泽泉科技举办公开技术讲座275多场,参会人员超过15000人次;同时在国内外应邀参加学术会议和展会296多次,与相关领域的客户有非常密切的交流合作。

 

2014年2月,上海泽泉科技股份有限公司在上海浦东孙桥现代农业园区投资成立了上海乾菲诺农业科技有限公司,建设了AgriPhenoTM “高通量植物基因型-表型-育种服务平台”,为植物科研和育种单位提供全面的样品收集和栽培,实验设计和项目合作,以及表型数据与生物信息学分析综合服务。平台成功主持了上海张江国家自主创新示范区专项发展资金重点项目“泽泉科技高通量植物基因型-表型-育种服务平台”。作为主持单位或合作单位参与了上海市农委和科委的30多项政府科研服务项目以及商业服务项目,如科技兴农种业发展项目“农作物分子育种的技术创新研究”和“青菜高通量表型图谱标准的建立及主要性状分析”、科技兴农重点攻关项目“基于图像分析及三维建模技术的黄瓜长势快速评价方法研究”、 “兰科观赏花卉分子育种技术研究与产业化应用”等。为了紧追世界科技发展水平,开启院企合作建立研究型平台的创新尝试,上海泽泉科技股份有限公司与上海市农业科学院,结合双方各自的优势,于2021年5月在上海农业科学院庄行试验站联合成立“上海市农业科学院庄行综合试验站泽泉科技植物表型技术研究平台”,AgriPhenoTM平台从上海浦东孙桥现代农业园区整体迁出,并入新建的植物表型技术研究平台。目前平台除拥有无人机表型平台、温室型和实验室型高通量表型分析系统外,还拥有现代化温室、生物学实验室、植物生理生态测量设备、农业气象测量系统和专业的数据库平台,已经具备了对植物、动物基因测序与植物表型研究的各类条件。可以承担高通量DNA提取、基因测序服务、分子辅助育种、植物生理生态研究等科研实验任务。同时可以为植物功能基因组、农业育种家提供高通量植物基因型测试、高通量植物表型测试和植物基因型-表型生物信息学数据分析等开放式服务。

 

近年来,随着“生物技术+人工智能+大数据、信息技术”为特征的第四次种业科技革命不断孕育,国际大型种业公司规模不断扩大,种业市场集中度持续提高。生物育种是种业创新的核心,构建现代生物育种创新体系,强化种质资源深度挖掘,突破前沿育种关键技术,培育战略性新品种,实现种业科技自强自立,是解决种源要害、打赢种业翻身仗的关键,也是牢牢把握住粮食安全主动权的根本保障。在这个大背景下,2022年9月,北大荒垦丰种业、上海泽泉科技联合成立北大荒垦丰种业-泽泉科技生物技术与表型服务中心(KA-BPSC),集中优势资源、整合集体力量,为解决种业种源“卡脖子”技术难题,打赢种业翻身仗贡献力量。

 

展望未来,上海泽泉科技股份有限公司希望在社会多方资源的支持和关怀下,不断提升自己,为社会提供更多、更优秀的产品和一流的服务!


售后服务
相关视频
暂无

资料下载
暂无
联系方式
单位名称:
详细地址:
上海市普陀区金沙江路1038号华东师大科技园2号楼8层
qq:
联系电话:

021-32555118

Email:

在线询价
*姓名:
*单位:
职位:
*手机:
*邮箱:
地址:
*地区:
资料:
需要
不需要
报价:
需要
不需要
留言:
验证码:
我希望获得多家供应商报价
首页 我的账户 立即询价 电话咨询