种子质量是植物育种和生产中的一个基础性和关键性因素,可以通过种子的发芽率或理化特性来衡量,在农业领域已变得越来越重要。一方面,优质种子是植物生长的良好开端,预示着丰收;另一方面,种子质量通常与食品质量密切相关,如质地、风味和营养成分。为了满足消费者的需求,种子在收获后应谨慎加工和储存。在采收、加工和储存过程中,需要一种快速、准确、无损的检测种子质量的方法。高光谱成像作为一种非破坏性、快速的种子质量和安全性评价方法,近年来备受关注。
高光谱成像技术结合了光谱技术和成像技术的优点,可以同时获取光谱和空间信息。也就是说,它可以同时获得不均匀样品的化学信息和化学成分的空间分布。高光谱技术在农业、食品、医药等行业得到了广泛的应用。高光谱成像技术在种子行业的潜在或实际应用包括种子活性、活力、缺陷、疾病、净度检测,种子成分测定。
本文总结和分析了高光谱技术在种子质量和安全检验方面的发展,介绍了该技术在种子分类分级、活性和活力检测、损伤(缺陷和真菌)检测、净度检测和种子成分测定等方面的能力,综述了该技术在种子质量检测和安全检测中的应用,包括分析的光谱范围、样品种类、样品状态、样品数量、特征(光谱特征、图像特征、特征提取方法)、信号模式等。
表1高光谱成像应用于种子分类和分级的参考文献摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Barley, wheat and sorghum |
1 variety of each kind of grain |
Spectra |
PCA |
PWbprediction map and OWc(single kernels) |
– |
Grain topography classification |
– |
Black bean |
3 |
Spectra and image |
SPA, PCA, GLCM |
OW (single kernels) |
PLS-DA, SVM |
Variety classification |
98.33% (PLS-DA) |
Grape seed |
3 varieties, two growth soil |
Spectra |
PCA |
OW (single kernels), PW PCA and prediction map |
GDA |
Assess Stage of maturation of grape seeds |
> 95% |
Grape seed |
3 |
Spectra and image |
PCA |
OW (single kernels) |
SVM |
Variety classification |
94.30% |
Maize |
2 (transgenic and non-transgenic) |
Spectra |
PCA, CARS |
PW PCA and prediction map, OW (single kernels) |
PLS-DA, SVM |
Transgenic and non-transgenic classification |
99.5% (PLS-DA) |
Maize |
4 varieties, 3 crop years |
Spectra |
no |
OW (single kernels) |
LS-SVM |
Variety classification |
91.50% |
Maize |
4 varieties, 3 crop years |
Spectra |
no |
OW (single kernels) |
LS-SVM |
Variety classification |
94.80% |
Maize |
4 varieties, 3 crop years |
Spectra |
no |
OW (single kernels) |
LS-SVM |
Variety classification |
94.40% |
Maize |
17 |
Spectra and image |
PCA, SPA, GLCM, MDS |
OW (single kernels) |
LS-SVM |
Variety classification |
94.40% |
Maize |
18 |
Spectra and image |
PCA |
OW (single kernels), PW PCA and prediction map |
PLS-DA |
Textural, vitreous, floury and the third type endosperm |
85% (PLS-DA) |
Maize |
3 hardness |
Spectra and image |
PCA |
PW PCA and prediction map, OW (single kernels) |
PLS-DA |
Hardness classification |
97% (PLS-DA) |
Maize |
14 |
Spectra |
joint skewness-based wavelength selection |
OW (single kernels) |
LS-SVM |
Variety classification |
98.18% |
Maize |
3 |
Spectra and image |
PCA |
OW (single kernels) |
SVM, RBFNN |
Variety classification |
93.85% (RBFNN) |
Maize |
6 |
Spectra and image |
PCA, KPCA, GLCM |
OW (bulk samples) |
LS-SVM, BPNN, PCA, KPCs |
Classes classification |
98.89% (PCA-GLCM-LS-SVM) |
Rice |
4 origins |
Spectra and image |
PCA, GLCM |
OW (single kernels) |
SVM |
Variety classification |
91.67% |
Rice |
4 |
Spectra |
PLS-DA, PCA |
PW PCA and OW (bulk samples) |
KNN, PLS-DA, SIMCA, SVM, RF |
Seed cultivars classification |
100% (SIMCA, SVM, and RF) |
Soybean, maize and rice |
3 of each kind of seed |
Spectra |
neighborhood mutual information |
OW (single kernels) |
ELM, RF |
Variety classification |
100% (ELM) |
Waxy corn |
4 |
Spectra and image |
SPA, GLCM |
OW (single kernels) |
PLS-DA, SVM |
Variety classification |
98.2% (SVM) |
Wheat |
8 |
Image |
WT, STEPDISC, PCA |
PW and OW (bulk samples) |
BPNN, LDA, QDA |
Classes classification |
99.1% (LDA) |
Wheat |
8 |
Spectra |
STEPDISC |
OW (bulk samples) |
LDA, QDA, Standard BPNN, Wardnet BPNN |
Variety classification |
94–100% (LDA) |
Wheat |
5 |
Spectra |
STEPDISC |
PW PCA and OW (bulk samples) |
LDA, QDA |
Classes classification |
90–100% (LDA) |
表2 高光谱成像应用于种子活力和活力检测的参考文献摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Barley |
1 variety, 8 treatments |
Spectra |
PCA, MNF |
PWbprediction map and OWc(single kernels) |
Maximum likelihood multinomial, regression classifier |
Germination level detection |
97% when single kernels grouped into the three categories |
Corn |
3 varieties, 2 treatments |
Spectra |
No |
OW (single kernels) |
PLS-DA |
Viability prediction |
> 95.6% |
Cryptomeria japonica and Chamaecyparis obtuse |
2 treatments of each kind of seed |
Spectra |
No |
OW (single kernels) |
Spectral index |
Viability prediction |
98.30% |
Cucumber |
1 variety, 2 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Viability prediction |
100% |
Muskmelon |
1 variety, 4 treatments |
Spectra |
VIP, SR, and SMC |
OW (single kernels) |
PLS-DA |
Viability prediction |
94.60% |
Norway spruce |
1 variety, 3 treatments |
Spectra and image |
L1-regularized logistic regression based feature selection |
OW (single kernels) |
SVM |
Viability prediction |
> 93% |
Pepper |
1 variety, 2 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Germination level detection |
> 85% |
Tree seeds |
3 varieties, 8 treatments |
Spectra |
LDA |
OW (single kernels) |
LDA |
Germination level detection |
> 79% |
Wheat, barley and sorghum |
B: 3 varieties W: 3 varieties S: 2, varieties 6 treatments |
Spectra |
PCA |
OW (single kernels), PW prediction map |
PLS-DA, PLSR |
Viability prediction |
R = 0.92 (PLS-DA) |
表3 高光谱成像应用于种子质量缺陷检测的参考文献摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Mung bean |
1 variety, 8 treatments |
Spectra and image |
PCA |
OWb(single kernels) |
LDA, QDA |
Insect damage detection |
> 82% |
Soybean |
1 variety, 5 treatments |
Spectra and image |
GLCM |
OW (single kernels) |
LDA, QDA |
Insect damage detection |
99% (QDA) |
Wheat |
1 variety, 4 insect varieties |
Spectra and image |
STEPDISC, GLCM, GLRM, PCA |
OW (single kernels) |
LDA, QDA |
Insect damage detection |
95.3–99.3% |
Wheat |
1 variety, 3 treatments |
Spectra and image |
PCA |
PWcprediction map and OW (single kernels) |
Spectral index |
Seed sprouted detection |
> 90% |
表4 高光谱成像应用于种子真菌损伤检测的参考文献摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Barley |
1 variety, 2 fungi |
Spectra and image |
PCA |
PWbprediction map and OWc(single kernels) |
LDA, QDA, MDA |
Fungus (Ochratoxin A and Penicillium) damage detection |
> 82% |
Canola |
1 variety, 2 fungi, |
Spectra and image |
PCA |
OW (single kernels) |
LDA, QDA, MDA |
Fungus (Aspergillus glaucus and Penicilliumspp.) damage detection |
> 90% |
Corn |
3 varieties, 5 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Fungus (Aflatoxin B1) damage detection |
96.90% |
Corn |
1 variety, 3 treatments |
Spectra |
No |
PW spectra |
spectral index |
Fungus (Aflatoxin A. flavus) damage detection |
93% |
Corn |
1 variety, 3 treatments |
Spectra |
PCA |
OW (single kernels), PW PCA |
LS-SVM, KNN |
Fungus (Aflatoxin A. flavus) damage detection |
> 91% (KNN) |
Hick peas, green peas, lentils, pinto beans and kidney beans |
5 different pulses, 2 fungi |
Spectra and image |
PCA |
OW (single kernels), PW PCA |
LDA, QDA |
Fungus (Penicillium commune Thom, C. and A. flavus Link, J.) damage detection |
96%-100% |
Maize |
4 varieties |
Spectra |
PCA |
OW (single kernels), PW prediction map |
SVM, SVR |
Fungus (Aflatoxin B1) damage detection |
R2 = 0.77 |
Maize |
1 variety, 5 treatments |
Spectra |
PCA, FDA |
OW (single kernels), PW PCA |
FDA |
Fungus (Aflatoxin B1) damage detection |
88% |
Maize |
1 variety, 5 treatments |
Spectra |
PCA |
OW (single kernels) |
FDA |
Fungus (Aflatoxin B1) damage detection |
98% |
Maize |
1 variety, 3 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Fungus (Fusarium) damage detection |
77% (PLS-DA) |
Maize |
1 variety, nine treatments |
Spectra |
PCA, variable importance plots |
OW (single kernels), PW PCA and prediction map |
PLSR |
Fungus damage detection |
R2 = 0.87 |
maize |
1 variety, 2 fungi, 3 treatments |
Spectra |
No |
OW (single kernels) |
discriminant analysis |
Fungus (Toxigenic and atoxigenic A. flavus) damage detection |
94.40% |
Maize |
12 varieties, 4 fungi |
Spectra |
PCA |
OW (bulk samples), PW PCA |
ANOVA, Fisher’s LSD test |
Fungus (Aspergillus strains) damage detection |
Fisher’s LSD test |
Oat50 |
1 variety, 4 treatments |
Spectra |
PLSR |
OW (single kernels), PW prediction map |
PLSR, PLS-LDA |
Fungus (Fusarium) damage detection |
R2 = 0.8 |
Peanut |
1 variety, 2 treatments |
Spectra |
PCA |
OW (single kernels), PW prediction map |
PCA |
Moldy kernel detection |
98.73% |
Peanut |
1 variety, 2 treatments |
Spectra |
ANOVA, NWFE |
OW (single kernels), PW prediction map |
SVM |
Fungus (Aflatoxin) damage detection |
> 94% |
Rice |
1 variety, 6 treatments |
Spectra |
No |
OW (bulk samples) |
SOM, PLSR |
Fungus (Aspergillus) damage detection |
R2 = 0.97 |
Watermelon |
1 variety, 2 treatments |
Spectra |
Intermediate PLS (iPLS) |
OW (single kernels) PW prediction map |
PLS-DA, LS-SVM |
Fungus (Cucumber green mottle mosaic virus) damage detection |
83.3% (LS-SVM) |
Watermelon |
1 variety, 2 treatments |
Spectra |
Intermediate PLS (iPLS) |
OW (single kernels), PW prediction map |
PLS-DA, LS-SVM |
Fungus (Acidovorax citrulli) damage detection |
> 90% |
Wheat |
4 varieties, 2 fungi |
Spectra |
PCA |
OW (single kernels), PW spectra |
LDA |
Fungus (Fusarium) damage detection |
> 91% |
Wheat |
33 varieties, 3 treatments |
Spectra |
No |
OW (single kernels), PW spectra |
spectral index |
Fungus (Fusarium head blight) damage detection |
81% |
Wheat |
1 variety, 3 treatments |
Spectra and image |
PCA, STEPDISC |
OW (single kernels) |
LDA |
Fungus (Fusarium) damage detection |
92% |
Wheat |
1 variety, 3 fungi |
Spectra and image |
STEPDISC, GLCM, GLRM, PCA |
OW (single kernels) |
LDA, QDA, MDA |
Fungus (Penicilliumspp., Aspergillus glaucus group, and Aspergillus niger) damage detection |
> 95% |
Wheat |
3 varieties |
Spectra |
PCA |
OW (bulk, single kernels), PW PCA |
PLS-DA, iPLS-DA |
Fungus (Fusarium) damage detection |
99% |
高光谱成像是一个复杂的、多学科的领域,其目的是在不进行单调的样品制备情况下,同时对多种化学成分和物理属性的含量和空间分布进行有效和可靠的测量,因此为种子自动分级和缺陷检测系统的设计提供了可能。本文概述的各种应用表明,在种子分级、活力和活力检测、缺陷和疾病检测、清洁度检测和种子成分测定方面,高光谱成像具有很大的应用潜力。可以预见,采用该技术的实时种子监测系统将在不久的将来满足现代种子工业控制和分选系统的需求。
全文阅读Feng L, Zhu S, Liu F, et al, et al. Hyperspectral imaging for seed quality and safety inspection: a review. Plant Methods, 2019, 15(1): 1-25.