活体成像技术是有由于生物学克隆技术与物理学成像技术的完美结合而产生的一种新型生物科学新技术。可见光活体成像技术主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为。
通过活体光学成像技术的发展历史,可以知道-70度是胜任活体动物光学成像检测的最低温度要求。如果高于此温度,由于过高的暗电流和阅读噪音,将导致灵敏度不能满足实验的需要,给实验带来很大的不利。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商Roper scientific公司最新研发的背部薄化、背照射
冷CCD,配合密闭性非常好的暗箱,使得直接监控活体生物体内的细胞活动和基因行为成为现实。而且此CCD对动物微弱发光还具有极高的灵敏度,双重利好因素的影响下,这项技术就达到了最好的效果,一时之间就得到了广泛的青睐与应用。科学家借此可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。所以说该技术是伴随着背部薄化、背照射冷CCD的产生而产生,并随着该CCD技术的发展而发展。
我们通过活体成像技术看到了温度对CCD的重要性。CCD的信噪比随温度降低而升高。从热力学角度来分析的话,温度越高,电子产生的动能越大,光电转换、转移的过程中的无作用信号越多,则CCD成像过程中的噪声影响越严重,信噪比就会急剧降低。反之,温度降低,则信噪比就会升高;温度降低可防止CCD老化。众所周知,高温会加速电子器件的老化,这也是为什么很多厂商为了降低温度对CCD信噪比的影响,而为CCD安装散热装置的原因;高温可形成暗电流。温度越高,暗电流产生的可能性越大,而暗电流的形成会影响到CCD的灵敏度,不利于生成高品质图像。
卓越的背照射冷CCD技术的问世以来,近年来科学家对此技术进行了大量的研究,产生了大量的高水平的应用活体成像技术进行肿瘤学、基因治疗、流行病学等研究的文献,极大的促进了生物医学在分子成像方面的发展。