■ 进食节律紊乱会导致的肥胖,与热量消耗减少有关
研究者们发现,仅在白天 (非活动期) 喂食的小鼠体重往往增加得更快。为了探究这种进食节律与体重增加的关系,研究者们将幼年小鼠分为三组 (图 1a):全天任意时间、仅白天 (非活动期) 和仅夜间 (活动期) 的等量高脂喂食 (HFD),并将小鼠置于热中性环境中 (30℃,这个温度被定义为小鼠用于维持体温所消耗的能量最小的温度),以便于探究进食诱导的能量消耗对体重增加的影响。
喂食一周后,研究者们发现,与只在夜间 (活动期) 喂食 HFD 的小鼠相比,只在白天 (非活动期) 喂食的小鼠体重显著增加 (图 1a),并且出现呼吸交换比节律 (RER) 的改变 (图 1b) (RER: 代谢产生的 CO2 与 O2 摄入量的比率)。以体重作为协变量的能量消耗分析显示,只在夜间 (活动期) 进食的小鼠的总能量消耗与体重比的斜率高于只在白天 (非活动期) 进食的小鼠 (图 1c),即在同一体重下夜间进食组小鼠的总能量消耗更大。
这表明,在夜间 (活动期) 喂食的小鼠体重正常,而在白天 (非活动期) 喂食会导致小鼠的肥胖,部分原因是进食诱导的能量消耗减少。
图 1. 进食节律紊乱通过减少能量消耗导致肥胖[2]
a. 实验设计,喂食分组:任意时间,限制在白天期(ZT0-12)或限制在夜间期(ZT12-24)。b. 在 HFD 喂食的第 0 天和第 7 天,三个分组的小鼠体重 (n = 5)。c. 呼吸交换比节律(RER)的变化。d. 在 HFD 第 7 天,24 小时内总能量消耗 (EE) 与体重的比值;每个点代表一只小鼠。
■ Zfp423 基因敲除可增加脂肪细胞产热,进而抵抗肥胖
为了确定提高脂肪细胞的产热是否可以缓解体重增加,并抵抗错误节律进食导致的肥胖,研究者们使用了脂肪细胞锌指蛋白 423 (Zinc finger protein 423,Zfp423) 基因敲除小鼠 (Zfp423-KO) (图 2a),该基因的敲除能导致产热增强。他们将 Zfp423-KO 小鼠置于产热激活最强的温度 (22-25℃) 下进行限时喂食 (TRF)。
为进一步探究 Zfp423-KO 小鼠增加细胞产热的机理,研究者们通过无偏代谢学分析评估脂肪细胞 Zfp423 特异性缺失后的稳态代谢物有什么不同 (图 3a)。结果表明,与对照相比,Zfp423-KO 脂肪细胞中具有 29 种差异丰富的代谢产物,其中肌酸、丙酮酸和乳酸增加,磷酸肌酸和 ATP 的减少 (图 3b),这些代谢物的变化可能与脂肪代谢有着密切的关联。
此外,Zfp423-KO 脂肪细胞中的磷酸肌酸/肌酸 (PCr/Cr) 比值较低 (图 3c)。肌酸激酶 B (CKB) 是产热脂肪无效肌酸循环中主要的激酶同工酶,脂肪细胞 Zfp423-KO小鼠肌酸激酶 B (CKB) 的丰度同样出现了增加 (图 3d)。这些证据表明,Zfp423 的缺失是通过增加呼吸、增加糖酵解的葡萄糖通量和增加肌酸循环来促进脂肪细胞产热的。图 3. Zfp423-KO 的脂肪细胞稳态代谢物特征[2]
a. 差异丰度代谢物热图。b. 分化脂肪细胞中 ATP、ADP、肌酸 (Creatine) 和磷酸肌酸 (Phosphocreatine) 的相对丰度 (n = 6)。c. Zfp423-KO 小鼠的分化脂肪细胞 PCr/Cr 比值 (n = 4)。d. Western blot 检测对照组和脂肪细胞 Zfp423-KO 小鼠的 iWAT 中 CKB 和甘油醛磷酸脱氢酶 (GAPDH) 的变化。■ TRF 小鼠的 iWAT 和 BAT 脂肪细胞基因表达情况
脂肪细胞的生物钟是维持体温产热节律所必须的。为了评估 TRF 是否受脂肪组织中的生物钟影响,研究者们分析了热中性条件下 (30℃) 野生型雄性小鼠 TRF 一周后,用于存储能量的白色脂肪细胞 (iWAT) 和用于产生能量的棕色脂肪细胞 (BAT) 中的基因表达情况。图 4. 任意时间进食和 TRF 对脂肪组织基因表达的影响[2]
野生型雄性小鼠在热中性条件下任意进食和限制进食 HFD 一周后,BAT (a) 和 iWAT (b) 中指示基因的表达。■ 脂肪细胞时钟基因 Bmal1 通过肌酸代谢调节健康
那么 BAT 和 iWAT 中时钟基因是否影响肌酸代谢的激活。研究者们使用了脂肪细胞 Bmal1-KO 小鼠。TRF 一周后,脂肪细胞 Bmal1-KO 的小鼠不管在白天期还是黑暗期,体重增加量都与仅在在白天期喂食的对照组小鼠相等,并有相似的葡萄糖耐量。表明脂肪细胞时钟基因在夜间期 TRF 过程中改善肥胖。Bmal1-KO 雄性小鼠在热中性状态下全天任意进食添加 2% 肌酸的 HFD 6 周 (左),每周摄食量 (中) 和 HFD 喂食第 5-6 周的白天期摄食量百分比 (右)。
上述证据表明,脂肪细胞时钟基因功能的降低可能通过破坏肌酸节律代谢来驱动 HFD 小鼠的代谢缺陷。为了验证这一点,研究者们培养了脂肪细胞特异性诱导Bmal1 (Bmal1-Tg) 的转基因小鼠。当给脂肪细胞 Bmal1-Tg 小鼠喂食 HFD 时,它们比对照组小鼠增重更少 (图 6b),并且在明暗期耗氧量都显著增加,葡萄糖耐量得到改善,肌酸循环也有所增加。因此,放大脂肪细胞的核心时钟节律足以增加能量消耗,减少体重增加。
该研究评估了 TRF 对体重的影响,发现节律紊乱,即只在生物体的非活动期进食的情况下,体重会增加更多,这种体重增加与脂肪细胞产热减少有关。进一步探究这种现象的背后机制,发现时钟基因的调控以及肌酸循环的作用至关重要。在非活动期进食,时钟基因会通过破坏肌酸循环,导致脂肪细胞产热功能受损,最终导致肥胖,值得注意的是,额外补充肌酸有助于改善这种现象。
人类的内在节律是活动期在白天,那么将进食限制在白天,减少或不在夜间的进食,脂肪细胞就会通过产热活动,帮你减肥。如果不可避免夜间进食,适当补充肌酸,也可有效控制体重。
相关产品 |
是从柑桔类提取物中获得的柠檬苦素类化合物,可作为抗肥胖症和降糖剂。 |
是从吴茱萸的果实中分离的生物碱, 具有多种生物活性,比如抗炎,抗肥胖和抗肿瘤。 |
是人胰高血糖素样肽-1 (GLP-1) 受体的激动剂。Semaglutide 有潜力用于 2 型糖尿病的研究。可用于抗肥胖研究。 |
是一种胰高血糖素样肽-1 (GLP-1) 受体激动剂,用于研究 2 型糖尿病和抗肥胖研究。 |
包含 1898 种化合物,主要靶向食欲控制、脂肪代谢及能量消耗等相关信号通路,是开发抗肥胖药物的有用工具。 |
包含 HY-L091 (脂代谢化合物库)、HY-L092 (糖代谢化合物库)、HY-L123 (人代谢物库) 等多个代谢相关化合物库,是研究代谢相关的有用工具。 |
参考文献
[1] Parmar R M, Can A S. Dietary Approaches To Obesity Treatment[M]//StatPearls [Internet]. StatPearls Publishing, 2022.