药物也和 “快递” 一般,什么零食类、美妆类、电子产品类……种类不唯一。几十年前,小分子药物是主要的治疗药物,随着时间的推移,新一代的治疗方法,包括蛋白质和肽、单克隆抗体 (mAb)、核酸和活细胞疗法,提供了新的治疗功能 (图 1)[1]。
表 1. 五类常用药物疗法的优势及局限/挑战[1]。
(1) 活细胞是最新一代的疗法。例如,多能干细胞可以恢复和治愈组织;重新编程的免疫细胞可以利用免疫系统进行疫苗接种和癌症治疗;微生物可以与微生物组相互作用来调节粘膜免疫、代谢过程和慢性炎症过程。
(2) 活细胞也可以被改造。如 2017 年获得临床批准的嵌合抗原受体(CAR)T 细胞,是针对特定癌症相关抗原的基因工程细胞毒性 T 细胞。“快递” (药物) 已准备就绪,接下来就是加工!像易碎物品要加泡沫处理等等。药物递送要更复杂些,通常要运用药物制备、给药途径、位点靶向特异性、代谢和毒性的相关原理,优化药物疗效和安全性,从而提高患者服药的便利性和依从性[2]。
简单来说,治疗药物的药物递送也需要加工处理,策略大致分为 3 种:药物修饰,微环境修饰和药物递送系统。当然,无论哪种策略都必须是在不影响安全性的情况下提高疗效。▐ 其一:药物修饰
药物修饰的目的是调节药物与体内分子、细胞和组织之间以及药物与其靶位点之间的相互作用,从而可以对药物在体内的输送进行一定程度的把控,以实现其预期功能。药物修饰可用于改善所有类别治疗的递送。
药物的修饰包括: (1) 对其结构 (例如官能团、氨基酸或核酸骨架) 的化学改变; (2) 与已知部分或靶向配体的缀合 (图 1)[1]。图 2. 抗体-药物偶联物 (ADC) 的一般作用机制[3]。
(a) ADC 与靶细胞上的抗原结合。(b) 抗原-ADC 复合物通过受体介导的内吞作用内化,在大多数情况下,从早期内体转运到溶酶体。(c) 在溶酶体中,内部环境可能使连接体或单抗骨架不稳定,导致细胞毒性成分解离并在细胞质中自由循环。当前 ADC 的大多数细胞毒性成分要么与 DNA 的小凹槽结合并诱导链断裂 (d),要么与微管蛋白结合,导致微管断裂 (e)。(f) 这两个过程都会导致细胞凋亡。
▐ 其二:微环境调控
微环境修饰是一种广泛的药物递送策略,一方面微环境调节剂可通过改变局部 pH 值来增强小分子、生物制剂和核酸药物在体液中的溶解度。
例如: (1) 小分子药物 Ciprofloxacin,与乳酸一起配制,通过 pH 调节来提高其溶解度; (2) 蛋白质和多肽等需渗透增强剂、皮下分散增强剂和其他环境调节剂来促进生物制剂的全身吸收; (3) 对于核酸药物,使用 pH 调节剂并引入细胞穿透肽和阳离子脂质来改善细胞内摄取、内体逃逸和细胞核靶向。
▐ 其三:药物递送系统
图 4. 药物递送系统演变示意图[1]。
图 5. 整合药物修饰和环境修饰的药物递送系统[1]。
当然药物递送离不开药物递送载体,静脉注射药物 Onpattro 即通过脂质纳米颗粒 (LNP) 系统内体逃逸,促进化学修饰的 RNA 药物在静脉给药后进入靶细胞 (肝细胞) 的细胞质。
此外,以新兴的活细胞疗法为基础制成的 SIG-001 缓冲悬浮液,采用表达 hFVIII 的基因工程化上皮细胞,并经 Afibromer 基质封装为胶囊球,通过微创的腹腔镜手术植入腹部进行治疗[10][11]。
本期小 M 为大家介绍了常见的五种治疗药物,以及三种药物递送策略,顺带为大家简单介绍了药物传递系统中的常用递送载体。种种策略,目的都是为了更好地实现药物分子递送。小 M 提醒大家做实验前,要充分调研文献,结合经验选择最适合自己的实验设计思路!
DOPE-GA 可用于制备脂质体,用于药物递送的研究。 |
eGFP mRNA-LNP 是一种包含 eGFP mRNA 的脂质纳米粒 (LNP),适用于 RNA 传递、翻译效率、细胞活力等检测。 |
BCN-exo-PEG2-maleimide 是含有 2 个 PEG 单元的 ADC Linker。其马来酰亚胺基团 (-Maleimide) 在水介质中会发生降解,并在药物递送研究中得到应用。 |
DOBAQ 是一种阳离子脂质,是一种对 pH 值敏感的脂质。DOBAQ 可用于脂质体应用于药物递送。 |
DOPE-NHS
DOPE-NHS 是一个连接子。DOPE-NHS 可用于将多肽与外泌体或者可能的其他基于膜的纳米颗粒结合。DOPE-NHS 可用于药物递送。 |
HP-β-CD ((2-Hydroxypropyl)-β-cyclodextrin) 是广泛使用的药物递送载体,可提高稳定性和利用度。 |
MCE的所有产品仅用作科学研究或药证申报,我们不为任何个人用途提供产品和服务。
参考文献: