DNA克隆技术概述
DNA 克隆技术其实就是基因编辑,是指制作特定 DNA 片段的多个相同副本的过程。在典型的 DNA 克隆过程中,通常会将目的的基因或其他 DNA 片段插入称为质粒的环状 DNA 片段中。插入是使用“剪切和粘贴”DNA 的酶完成的,它会产生一个重组 DNA分子,或由多个来源的片段组装而成的 DNA。
质粒 DNA 的环状片段在其末端具有与基因片段相匹配的突出端。质粒和基因片段连接在一起,产生含有基因的质粒。这种含有基因的质粒是重组 DNA 的一个例子,或由多种来源的 DNA 组装而成的 DNA 分子。
在质粒中复制多个 DNA 序列有什么意义?
在某些情况下,我们需要大量 DNA 拷贝来进行实验或构建新的质粒。在其他情况下,DNA 片段编码一种有用的蛋白质,细菌被用作制造蛋白质的“工厂”。例如,人类胰岛素基因在大肠杆菌中表达,来制造胰岛素。
DNA克隆的基本步骤
1.切开质粒并“粘贴”到基因中。这个过程依赖于限制酶(切割 DNA)和 DNA 连接酶(连接 DNA)。
2.将质粒插入细菌。使用抗生素选择来识别占用质粒的细菌。
3.培养大量携带质粒的细菌,并将它们用作制造蛋白质的“工厂”。从细菌中收获蛋白质并纯化。
让我们仔细看看每一步。 1. 剪切和粘贴 DNA
不同来源的 DNA 片段如何连接在一起?一种常用的方法使用两种类型的酶:限制酶和 DNA 连接酶。
限制酶是一种可识别特定的目标序列的DNA 切割酶,许多限制性内切酶产生带有短单链悬垂的切割末端。如果两个分子有匹配的悬垂,它们可以碱基配对并粘在一起。然而,它们不会结合形成一个完整的 DNA 分子,直到它们被DNA 连接酶连接起来 ,DNA 连接酶密封了 DNA 骨架中的缺口。我们克隆的目标是将目标基因(例如,人胰岛素)插入质粒。
我们从一个环形细菌质粒和一个目标基因开始。目标基因的两端是限制位点,或特定限制酶识别的 DNA 序列。在质粒中,还有一个被同一种酶识别的限制性位点,就在将驱动细菌表达的启动子之后。
质粒和靶基因都(分别)用限制酶消化。纯化并合并片段。它们具有匹配的“粘性末端”或单链 DNA 悬垂,因此它们可以粘在一起。
DNA 连接酶将具有匹配末端的片段连接在一起,形成一个完整的 DNA 分子。这会产生包含目标基因的重组质粒。
2. 细菌转化与选择
质粒和其他 DNA 可以在称为转化的过程中引入细菌,例如实验室中使用的无害大肠杆菌。在转化过程中,特别准备的细菌细胞会受到冲击(如高温),促使它们吸收外来 DNA。
将通过连接产生的 DNA(可能是所需质粒、副产物质粒和线性 DNA 片段的混合物)添加到细菌中。细菌受到热休克,这使它们更容易通过转化吸收 DNA。然而,只有极少数细菌能成功地摄取质粒。